

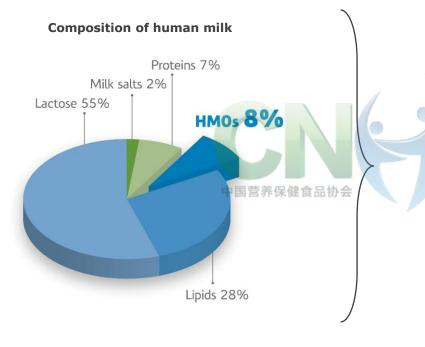
FrieslandCampina Domo: high quality ingredients for infant nutrition

Breast milk is the **best** nutrition for infants.

When breast milk is not or insufficiently available, we want to offer the very best alternative there is: **guaranteed safe** and the **highest quality** possible infant nutrition, because we believe:

中国营养保健食品协会

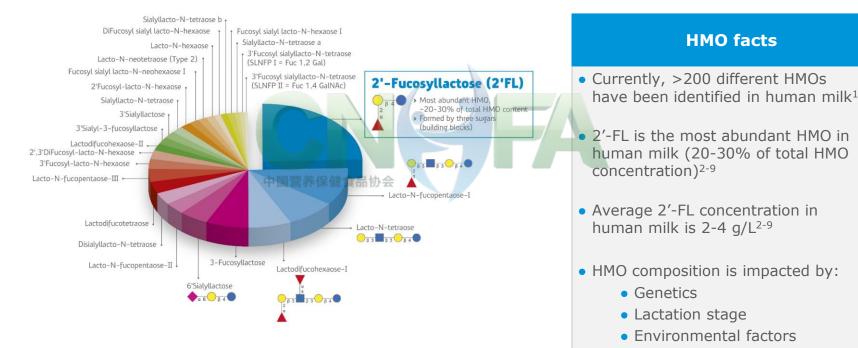
Every child deserves to grow up healthy


Research progress of 2'-Fucosyllactose in the next generation infant nutrition

Nov 1st 2018 | Beijing | China Nutrition and Health Food Association Benfeng Sun | Sr.Technical Manager | FrieslandCampina Ingredients

Human milk contains a high concentration of Oligosaccharides (HMOs)

HMOs in human milk


- HMOs are oligosaccharides (complex sugars)¹
- Third largest component in mother's milk
- Concentration in milk: 10-15 g/l²
- Soluble fibers, indigestible by the infant
- Key role in protecting and promoting the health of newborn infants²
- Currently absent in infant formula¹

-> It is common nowadays to supplement infant formula with other prebiotic fibers, such as galacto-oligosaccharides (GOS)

There is a wide variety of HMOs present in human milk 2'-Fucosyllactose is the most abundant HMO

¹German (2008), ²Bao (2007), ³Chaturvedi (2001), ⁴Kunz (2000), ⁵Martin-Sosa (2003), ⁶Newburg (2004), ⁷Thurl (1996, 2010), ⁸Wu (2010), ⁹Asakuma (2007)

HMOs in milk depend on genetic background of the mother¹

There is genetic variety in a number of genes involved in HMO synthesis:

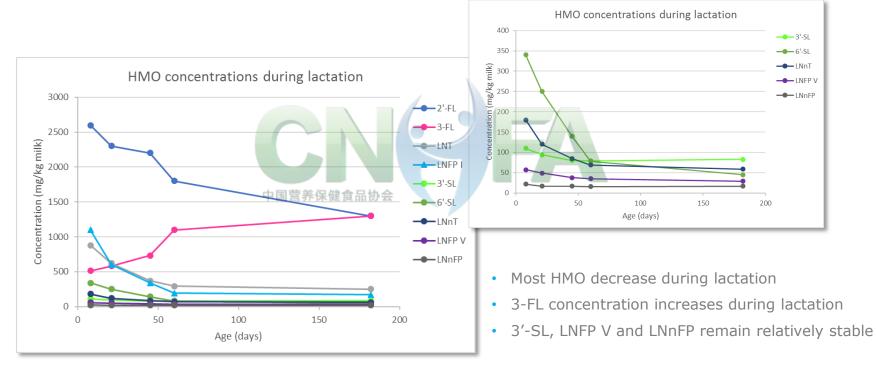
- FUT2 = a1-2 fucosyltransferase
- FUT3 = a1-3/4 fucosyltransferase

Genotype mother	Enzyme missing	Main HMO missing from milk
Se ⁺ Le ⁺	-	
Se+ Le⁻	FUT3	中国营养保留食目标 4 NFP-II
Se ⁻ Le ⁺	FUT2	2'-FL, LNFP-I
Se ⁻ Le ⁻	FUT2, FUT3	2'-FL, 3-FL, LDFT

Se = Secretor gene

Le = Lewis gene

Secretor vs non-secretor


- Worldwide, roughly 80% of the population is secretor
- The % secretor does differ per region, e.g. 100% secretor in Mexico
- For China, the % secretor has been reported to be 78%^{2,3}

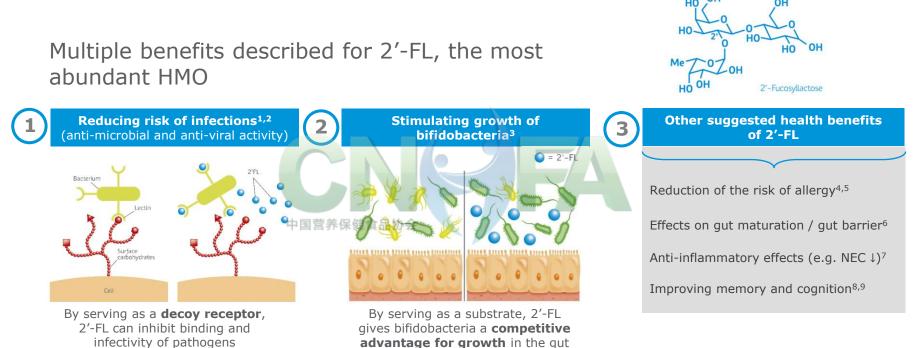
²Austin et al., 2016, ³Guo et al., 2017

HMO concentrations in milk change during lactation Maternal Infant Nutrition Growth (MING) study, Beijing, Suzhou and Guangzhou

HMO key message

HMOs in human milk

- HMOs: Third largest component in mother's milk
- Composition:
 - There are >200 different HMO described in human milk
 - Most abundant HMO: 2'-FL
- Genetic variation determines HMO composition in human milk
- HMO concentrations change during lactation



Application suggestion

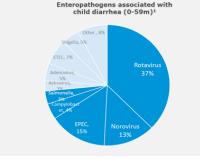
Health benefits described for 2'-FL

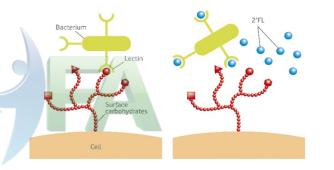
¹Morrow et al., 2004, ²Weichert et al., 2013, ³Yu et al., 2013, ⁴Castillo-Courtade et al., 2015, ⁵Sprenger et al., 2016, ⁶Holscher et al., 2014, ⁷Autran et al., 2015, ⁸Vazquez et al., 2015, ⁹Oliveiros et al., 2016

Diarrhea is a leading cause of death among children developing world around the world, especially in the developing world

Percentage of deaths among children under age 5 attributable to diarrhea

WHO: 11% of child (0-5 yrs) mortality is caused by diarrhea




2'-FL helps prevent pathogen binding^{1,2}

2'FL can reduce binding of pathogens associated with childhood diarhea¹

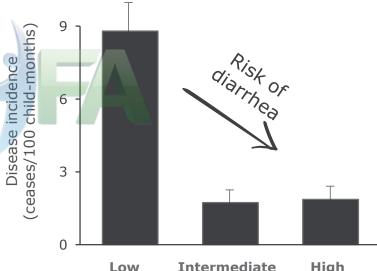
- Norovirus²
- Rotavirus³
- Enteropathogenic Escherichia coli⁴
- Campylobacter^{4,5}
- Salmonella enterica serovar fyris⁴
- Pseudomonas aeruginosa⁴食品协会

Mechanism for reducing the risk of infections (e.g. Norovirus, *Campylobacter*)^{1,2}

- 2'-FL is similar to carbohydrate structures on the gut cells of infants³
- Pathogens typically attach to these cell-bound structures to infiltrate the gut³
- 2'-FL serves as a decoy, thereby preventing pathogen binding to the intestinal wall⁴

2'-FL reduces the risk of child diarrhea¹

Objective


 Determine the association between maternal milk levels of 2-linked fucosylated oligosaccharides and prevention of diarrhea in Mexican infants (0-2 yrs).

Results

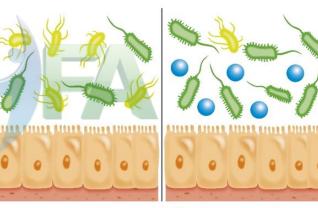
 High levels of 2-linked fucosylated oligosaccharides in human milk (among which 2'-FL) are associated with less diarrhea

2'-FL levels as % of total HMO:

Low: <29% Intermediate: 29-37% High: >37%

Campylobacter diarrhea

Low Intermediate High Levels of 2-linked fucosylated oligo's

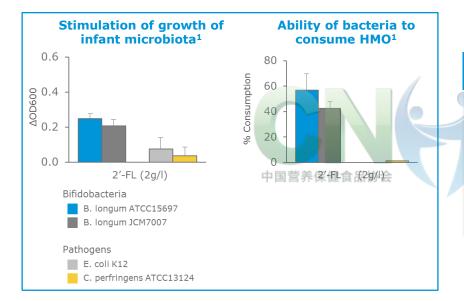


2'-FL stimulates the growth of Bifidobacteria (prebiotic effect)^{1,2}

- Breastfed infant microbiota is typically rich in bifidobacteria³
- Infants fed breast milk lacking 2'-FL show delayed establishment of bifidobacteria in their gut microbiota²
- Beneficial bacteria in the gut metabolize HMO and grow¹
- Pathogenic bacteria hardly metabolize HMO¹

中国营养保健食品协会

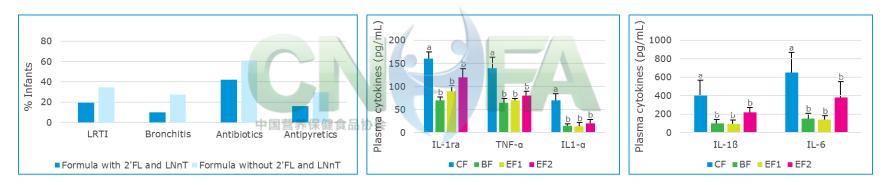
 Metabolites from bacterial HMO degradation create an environment that also benefits the growth of desired bacteria¹



🔘 = 2'-FL

2'-Fucosyllactose stimulates growth of bifidobacteria¹

In vitro results on bifidogenic effect


- 2'-FL stimulated the growth of *Bifidobacterium longum*, but not that of the pathogens *E. coli* and *C. perfringens*¹
- Bifidobacteria utilized 2'-FL, whereas *E. coli* and *C. perfringens* did not¹

Clinical trial results with 2'-FL 2'-FL is safe and well tolerated

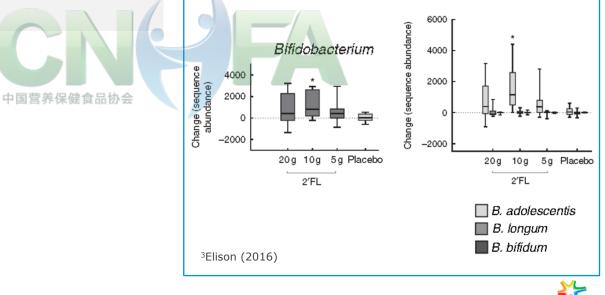
- Clinical trials in infants^{1,2} and adults³ have shown 2'-FL to be safe and well tolerated
- In addition, promising health effects have been found^{2,4}

IF + 2'-FL and LNnT²:

- ↓ lower respiratory infections
- \downarrow medication use

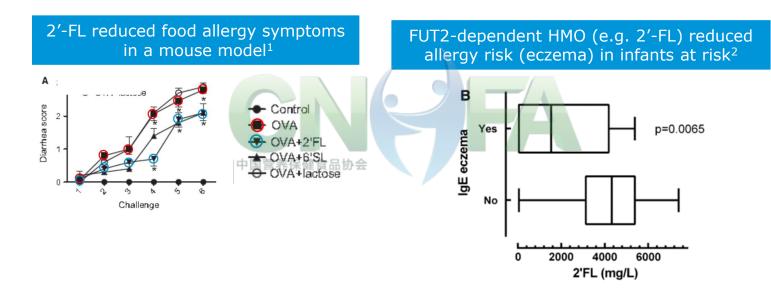
IF + 2'-FL⁴:

• Plasma inflammatory cytokines more closely resemble those found in breastfed infants



Clinical results in infants

 1.0 g/L 2'-FL and 0.5 g/L LNnT supplementation to infant formula shifted the stool microbiota closer to that of breastfed infants^{1,2}


Clinical results in adults

• 2'-FL supplementation of adults (5, 10 or 20 g/day) increased *B. adolescentis* in the gut³

Potential additional health benefits of 2'-FL Allergy risk reduction

3

Application suggestion

FrieslandCampina is submitting for regulatory approvals in the Infant Formula key markets

_

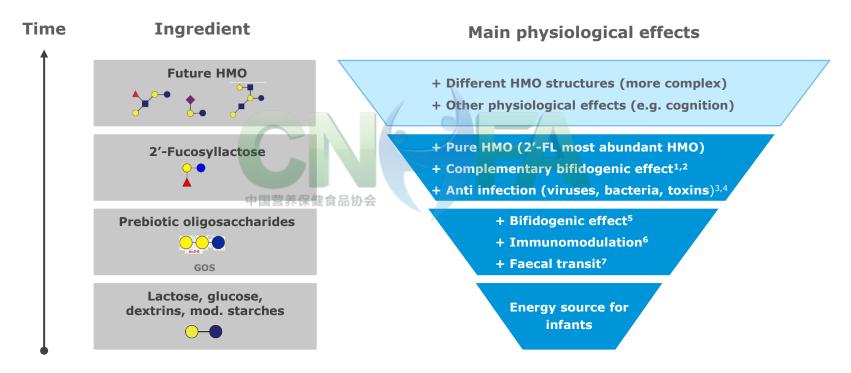
- Generally Recognized As Safe (GRAS)-FDA GRN No. 735-max 2.4g/L
 - https://www.accessdata.fda.gov/scripts/fdcc/?set=GRASNotices&id=735
- FDA Notice | GRAS approval in April 2018

- Novel Foods Application procedure-EUR-Lex-32017R2470-max 1.2g/L
- Approval on 2'-FL dossier October 2017. SE approved December 17 EC confirmation in May 2018
 - https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R2470

- National Health Committee
- Application of 2'-FL as nutritional fortifier
- Expert panel meetings held; Not decided yet whether link to EU or FDA dossier

Recommended dosage for 2'-FL in infant formula

The average human milk concentration of 2'-FL is 2 to 4 g/L¹⁻⁸, slowly declines during lactation to \sim 1.2 g/L⁹ 1 g/L's well tolerated and can contribute to reduced respiratory infections and antibiotics use¹⁰⁻ ¹¹.Higher than 2 g/L can reduce risk of infection and allergy¹²⁻¹³.


Currently no evidence for a health benefit of lower levels than 1 g/L. Regulatory approved 2'-FL are max 1.2 g/L in EU¹⁴ and max 2.4 g/L in USA¹⁵

Based on scientific studies and clinical trials, We recommend to apply a dosage of 2'-FL between 1 and 2 g/L in infant formula.

Reference: ¹Bao (2007), ²Chaturvedi (2001), ³Kunz (2000), ⁴Martin-Sosa (2003), ⁵Newburg (2004), ⁶Thurl (1996, 2010), ⁷Wu (2010), ⁸Asakuma (2007), ⁹Austin (2016), ¹⁰Marriage (2015), ¹¹Puccio(2017), ¹²Morrow (2004), ¹³Sprenger (2016), ¹⁴EUR-Lex-32017R2470-EN, ¹⁵FDA GRN No. 735.

Achieving the leading position on GOS and HMO

¹Bode (2009, 2012), ²Lewis (2015), ³Morrow (2004), ⁴Weichert (2013), ⁵Ben (2004), ⁶Eiwegger (2010), ⁷Sierra (2014)

Thanks for your attention

FrieslandCampina Ingredients

Benfeng Sun/Sr. Technical Manager

T: 010 6566 6099 ext.679 M: 186 1180 0085 E: benfeng.sun@frieslandcampina.com www.frieslandcampina.com

